結帳
購物車有 0 項商品,共 0
天下文化首頁 主題 科學自然 又莫名被手機跳出來的廣告勸敗了嗎?科技巨擘沒透露的《資料煉金術》
科學自然

發表日期

2022.06.09
收藏文章 0

文章摘錄自

大數據(巨量資料)時代,資料是創新最重要的原物料!資料增值的關鍵不在蒐集,而在自由使用和深入分析!我...
定價 400
優惠價 79折,316
$400 79$316
天下文化Line友

又莫名被手機跳出來的廣告勸敗了嗎?科技巨擘沒透露的《資料煉金術》


又莫名被手機跳出來的廣告勸敗了嗎?科技巨擘沒透露的《資料煉金術》_img_1
圖片來源:pexels

Google內部如何運作?

2014年,時任執行長的施密特與產品資深副總羅森柏格在《Google模式》一書給出了答案。他們用各種有趣的軼事介紹了Google的企業文化、絕頂聰明的員工如何進行敏捷團隊合作與發揮創意合作,以及大家如何以求新若渴的態度,追求矽谷典型的下一次創新飛躍。

然而,故事說得好聽,也不代表講的就是完整的故事全貌。在《Google模式》中,幾乎完全沒提到資訊不對稱,也沒說到Google獨占了大批寶貴的資料。

並不是只有Google採取了這套策略。基本上,所有科技巨星公司都遵照這份劇本行事,會開放出來的知識與技術,都不屬於那些會影響他們爭奪數位主宰地位的領域。例如蘋果,清楚知道有哪些用戶、在哪個時候、在iPhone上安裝了哪些應用程式,但絕不會把這些資訊告知應用程式開發者。

Spotify的方法也非常類似。這個瑞典音樂平臺很清楚自己為數約三億五千萬的用戶在什麼時候聽什麼音樂,也是靠著這種資訊不對稱的狀況,讓Spotify與供應商的談判得以掌握優勢。

至於Booking.com雖然會告訴我們許多住宿房源的資訊,但還是有些資料由他們獨門掌握,例如:平臺天天都會觀察訂房狀況,因此就能掌握旅館如何根據空房數與時段而調整定價演算法。

為人作嫁的「笨水管」

回想起來,似乎創新者在成為巨星企業的路上,都是靠著放出一片修辭的煙幕,來混淆視聽,把自己促成破壞性成功的真正因素隱藏起來,而為了要解釋自己如何發展並鞏固自身的資訊能力,創新者已經發展出一套特別會造成誤導的故事。故事是這麼說的:「數位化讓全世界得到了令人難以置信的資料量。從圖表看來,(據稱)全球資料量呈現指數成長,已經來到以ZB為單位(1 ZB 可是足足有21個0)。」

當然,這件事本身就難以想像,但這種敘述卻有助於造成誤解:會讓聽眾覺得,顯然傳統企業完全無力應對這股資料的洪流。畢竟,傳統企業可沒有能夠處理到ZB的超級電腦。而且更慘的是,傳統企業又沒有那種「聰明」人,像是人工智慧專家、資料科學家、量化分析專家之類,因為這些人瞭解演算法的祕密,才能看穿並掌握大數據深藏不露的見解。

根據這種說法,一般人就會覺得:運算能力及所需的人類智慧,在當代經濟體系當中的分布並不平均,大半已集中在那些數位龍頭的手中。正因為這種雙重不平等,才讓這些龍頭企業占據了資訊科技的主宰地位。

這個故事聽起來很有道理,但其實就是個騙局。整套說法對於科技的理解,至少在三個方面大有問題。

第一,今日想要發展資訊的力量,所需的運算能力並不需要太高的成本,絕不是只有少數大公司與富裕政府能夠負擔。從貝佐斯定律可以看出,在亞馬遜網路服務(AWS)成功的激進定價策略下,雲端運算是如何及為何讓高速、大量的資訊處理成為人人都做得到的事

雲端服務的問題,絕不在於世界上的業者太少,反而恰恰相反:雲端服務的業者已經太多。

我們從經濟學知道,基礎建設服務的提供就是兩種形式,第一種是由寡頭壟斷,於是十分昂貴,除非國家介入;第二種則是有多家業者,競爭激烈,於是服務成為一種商品,而利潤空間也受到壓縮。現在的雲端運算服務就是第二種,業者幾乎無處不在,但很多業者就是扮演著一種「笨水管」的角色——雖然協助處理資料,但對於資料在自家的伺服器上處理所產生的價值,這些業者卻無從取得一絲半毫。如果耗費公帑卻只是建出「笨水管」,會是一大錯誤,也無益於促進「數位主權」。

演算法大多不是私有智慧財

說到那些數位巨星企業為何能取得優勢,第二個普遍的誤解在於:搞錯了演算法扮演的角色。在那些故事中,總是把演算法吹捧得像是數位巨星企業和那些優秀工程師的智力精華結晶,是必須全力保護的智慧財產。

另外還說,現在只有Google、蘋果、臉書、亞馬遜,以及百度、阿里巴巴、騰訊這幾座互相競爭的萬神殿,才擁有足夠的數學巫術,能夠碰觸到資料的無上智慧。

但事實是:這純粹就是胡說八道!

許多在資料分析上廣泛使用的演算法,都是出自於學界,常常最早就是公布在開源的演算法資料庫裡,人人都能免費存取。例如「R」這套廣受愛用的資料分析軟體,就是一項開源專案的成果,能夠免費下載。這項專案的背後,是由主要來自各大學的開發者結成聯盟,共同監督,並付出心力。

許多常見的機器學習法也是如此。有些最重要的機器學習演算法都是直接公諸於世,早已為人所知多年。而對應的工具與應用程式也都可以在GitHub(目前屬於微軟旗下)等開放平臺取得。

事實上,講到演算法,巨星企業其實是意外的樂於助人。就算這些企業確實是自行開發演算法,通常也是只要過了一小段時間,就會解除專利保護。而在某些地方,矽谷甚至是朝著開放的方向,更邁進了一步。像是馬斯克(Elon Musk)這樣的人,正在出資創辦OpenAI的平臺,希望讓人人都能免費下載各種廣受好評的機器學習工具,實際投入使用。

數位革命必需的原物料

關於數位顛覆如何導致資訊權力轉移,主流故事裡的第三個、或許聽來也最令人肅然起敬的元素,就是號稱這些成功的真正原因在於人類的聰明才智。

但事實是,雖然前面談到的資料煉金術或許真的存在,但可沒有什麼資料煉金術士組成的祕密集團。各大數位企業的資料科學家與量化分析專家,用的數學與統計材料都與一般人完全相同。那些矽谷龍頭企業之所以能占據主導地位,並不是因為真的聘到了什麼人類最頂尖非凡的頭腦。

Google、臉書、亞馬遜、蘋果、微軟。Netflix、PayPal、Spotify、Uber、Booking.com、百度、阿里巴巴、騰訊、字節跳動、商湯科技、依圖科技……這些數位龍頭在各自的領域,打造各種機制、機會與應用程式,蒐集大量只掌握在他們自己手中的資料。就這點而言,「資料」和「石油」確實有些相似之處。不論是誰擁有油田,可不會想把石油拱手讓人。而對資料龍頭來說,也只有在特殊情況下,才會與他人分享自己的原物料。這種態度從策略角度來看並不難理解,因為「取用權」能夠轉化為競爭優勢;這正是企業估值時的基礎,而且這能讓競爭對手苦思、苦惱、苦無解方。

【書籍資訊】
《資料煉金術》
又莫名被手機跳出來的廣告勸敗了嗎?科技巨擘沒透露的《資料煉金術》_img_2
出版日期:2022.05.26