減重焦慮不是你的錯!減重名醫蕭捷健《碳水循環》:你不是意志力不夠,而是選錯了方法
蕭捷健醫師在《碳水循環》中溫柔呼籲:體重焦慮不是你的錯,你只是選錯了方法。本書針對常見減重迷思,提出與身體合作、非極端的科學方法,幫助你改善代謝、找回健康與快樂。無需禁澱粉、不必自我折磨,讓瘦身成為自然且可持續的生活節奏。
你覺得自己的幾何與空間能力好不好?可能有超過半數的人回答「不好」。歸根究柢,無論是一般成年人或是在學的學生,在學「幾何」的時候,90%以上恐怕都用背的,不求理解。這可不是學習幾何最好的方法。
學幾何,就要動手操作。《動手做幾何》這本書,是黃敏晃老師為基礎幾何教學的最佳示範,你會看到如何透過遊戲式的、能夠具體操作的活動,以及思考探索,來學到有用的幾何與空間能力。
「學生能力的成長,最要緊的其實不是教材,而是老師跟他所採用的教學法。」
──黃敏晃
0. 序
1. 閒話幾何與空間能力
2. 組合正方體的塗色問題
3. 互納盒
4. 正方體的平面截面
5. 人面獅身話複製
6. 漫談平面圖形的變幻
7. 足球和截角正多面體
8. 隱形金字塔
9. 一塊花布
10. 模擬撞球遊戲
談到幾何,許多人會聯想到二千多年前古希臘歐幾里得的《幾何原本》。由假設出發,純粹用邏輯推論而得到結果的方式,慢慢的變成人類文明最重要的成分之一。所以,世界各國的幾何教學,不可避免的特別強調此典範。但是,形式的推論是很難的,尤其是在推論幾何引入的年段──八、九年級。照筆者知道的資訊,八、九年級的學生論證幾何,90%以上都用背的,不甚理解。
凡.希理(Van Hiele)夫婦認為幾何的學習是有階段的,他們提出的五階段論,在現在的數學教育界是大家都熟知的,概述如下:
第一期為視覺期(Visualization),此期兒童只能就看到的幾何物件之整體外貌,辨認其不同的形體。
第二期為分析期(Analysis),此期的兒童能經由觀察和簡單的實驗,認識幾何形體的外顯特徵(初期例如有幾個頂點、幾條邊等等),垂直、平行、線段等長、角和形的全等(後期)的掌握。
第三期為非形式化的推論期(Informal Deduction),此期的學童能做一些簡單的(譬如說三、四步驟)推論,粗略的建立並掌握圖形屬性的一些內在關係,也能夠進一步對幾何形體加以分類。
第四期為形式推論期(Formal Deduction),此期的學生能夠做比較嚴格的形式論證,即有層次的靠邏輯由已知推到要證明的結果。他們也能夠瞭解並掌握充分和必要條件,以及正逆命題之間的差異等。
第五期為系統知識期(Systematic),此期可以說是專家期。他們能夠理解幾何的系統是由公理、公設所建立的幾何知識體系,並進一步做各種幾何體系(如歐幾里得空間及非歐氏空間)之間的比較等。
不難看到,國中、小學的幾何學習大致上是由第一期到第二期(小學),以及由第二期到第三期(國中)。把學生由第三期提升到第四期,應該是高中(也許大學部)的任務;至於到第五期,則只能在大學數學系和研究所才能去講究的。
如何帶領學生由較低的認知層級,提升到較高的認知層級,這是教育的真正意涵,也是所有數學教師不可推卸的神聖任務。怎麼做?
以第二期到第三期的情形,我們不能只要求學生做一些無趣的,像考試那樣的推論練習,而要透過遊戲式的,能夠具體操作的活動,期間要求講道理等,才能慢慢達到。本書所介紹的這十篇文章,幾乎都是由遊戲式的活動編織而成的,所以有這樣的功能。希望老師們能夠在自己的課堂中試用看看,學生應該是會喜歡的。
美國印地安納州普度大學(Purdue University)數學哲學博士。國立台灣大學數學系副教授(1998年退休)。1974年及1993年小學數學課程標準委員會召集人,並在上述課程標準下國立編譯館出版之小學數學教科用書編輯小組擔任召集人。2001年九年一貫國中小學數學課程暫定課綱委員。1972年及1985年國中數學課程標準委員會委員,並在上述課程標準下國立編譯館出版之國中數學教科用書編輯小組擔任組員。1971~73年編寫完成一套高中數學教科書《新編高中數學》。1992年和好友朱建正教授合力推展「數學步道」之概念與實務。編著的一般性書籍有:《數學世界中的萬花筒》(牛頓,1986,已絕版)《數學解題規則》(牛頓,1986,已絕版)《數學年夜飯》(心理,1998,已絕版)《規律的尋求》(心理,2000)《人間處處有數學》(天下文化,2003)《讓我們來玩數學吧》(小天下,2005)《資優數學的星光大道-玩弄數學問題》(翰品,2011)《另類數學教室》(天下文化,2013)《生活數學故事》(天下文化,2013)
2014/05/29
BWS142
天下文化
平裝
14.8×21cm
部分彩色
9789863204725
240
354